

CREATING A NORTH AMERICAN IRON METALLICS & VANADIUM PRODUCER

SEPTEMBER - 2023 TSX.V: SR

Forward Looking Statement

Forward-looking statements relate to future events or the anticipated performance of the Company and reflect management's expectations or beliefs regarding such future events and anticipated performance. In certain cases, forward-looking statements can be identified by the use of words such as "plans", "expects", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "believes", or variations of such words and phrases or statements that certain actions, events or results "may", "could", "would", "might" or "will be taken", "occur" or "be achieved", or the negative of these words or comparable terminology. By their very nature forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual performance of the Company to be materially different from any anticipated performance expressed or implied by the forward-looking statements.

Important factors that could cause actual results to differ from these forward-looking statements include risks related to failure to define mineral resources, converting estimated mineral resources to reserves, the grade and recovery of ore which is mined varying from estimates, future prices of vanadium and other commodities, capital and operating costs varying significantly from estimates, political risks arising from operating in Finland and Peru, uncertainties relating to the availability and costs and availability of financing needed in the future, changes in equity markets, inflation, changes in exchange rates, fluctuations in commodity prices, delays in the development of projects, conclusions of economic evaluations, changes in project parameters as plans continue to be refined, uninsured risks and other risks involved in the mineral exploration and development industry.

Although the Company has attempted to identify important factors that could cause actual performance to differ materially from that described in forward-looking statements, there may be other factors that cause its performance not to be as anticipated. There can be no assurance that forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. These forward-looking statements are made as of the date of this presentation and the Company does not intend, and does not assume any obligation, to update these forward-looking statements.

†Qualified Persons ("QP") as defined by National Instrument 43-101 (NI 43-101)

BLACKROCK PROJECT

Claude Bisaillon P Geo.	SGS Geostat	Geology and Mineral Resource Estimation
Isabelle Leblanc, P.Eng.	BBA Inc	Mineral reserve estimation, mine planning, mining infrastructure
Andre Allaire, P.Eng.	BBA Inc	Processing, Surface infrastructure, estimate integration, financial model, overall NI 43-101 integration
Nathalie Fortin, P.Eng.	WSP	Environmental
Nicolas Skiadas, P.Eng.	Journeaux Associates	Tailings and Water management

MUSTAVAARA PROJECT

le-Matti Seppä, EurGeol. European Federation of Geologist	Mustavaara mineral resource
---	-----------------------------

CORPORATE DISCLOSURE

Adrian Karolko, P.Geo.	Has verified the data and information disclosed in this presentation

High Purity Pig Iron Projects Supporting Decarbonization

High purity pig iron that supports the transition to electric arc furnaces and greener steel

Made with renewable carbon free power

Critical metal byproducts supporting stronger lighter transportation and long-life grid scale batteries

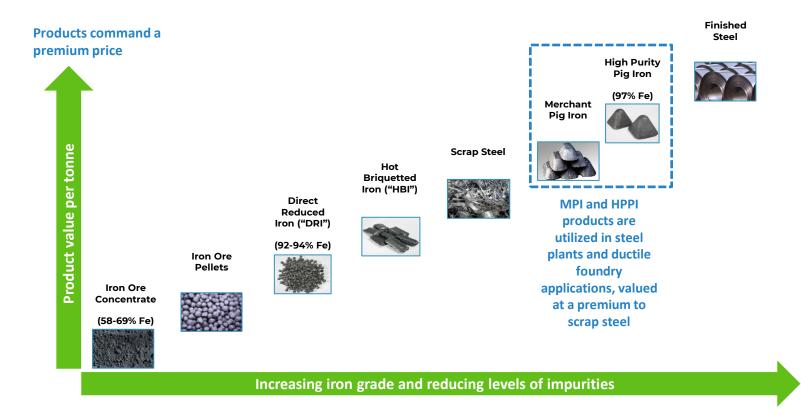
Two large-scale long-life assets and a unique metallurgical facility in the portfolio

BlackRock: C\$1.9B NPV_{8%}

First quartile on cost curve

Doesn't account for BlackRock's 2nd open pit or Mustavaara mine

Fully-permitted for construction of the BlackRock mine site and metallurgical facility in Québec


Government of Québec significant financial sponsorship + related infrastructure + additional support from Orion

BlackRock's Products are High Value Steel Inputs

- BlackRock will produce high purity pig iron (HPPI)
- Critical supply for steel and foundry producer's energy transition/decarbonization plans
- Enables circular recycling economy constraints with amount of high-quality scrap availability
- Pig iron and nodular iron makes the transition to electric arc furnaces sustainable

Transition to Electric (EAF) Reduces CO2 Emissions Globally

Steel produced by EAF steelmakers in the U.S. has a carbon intensity that is ~75% lower than traditional blast furnace steelmakers (1)

The Government of Canada has invested \$870M⁽²⁾ to fund the transition from Blast Furnaces to Electric Arc Furnaces ("EAF's") for steel making

Blast Furnaces use ~25% scrap steel in their recipe + many types of iron inputs

EAF's use ~75% of scrap in their metallic iron recipe to make steel

Leads to scarcity of prime scrap

Residuals contaminants in scrap supply

Solution is:
Pig iron
HBI/DRI

BlackRock will produce highpurity pig iron

#1 spec is Rio Tino's Sorel metal Pig Iron also out of Quebec

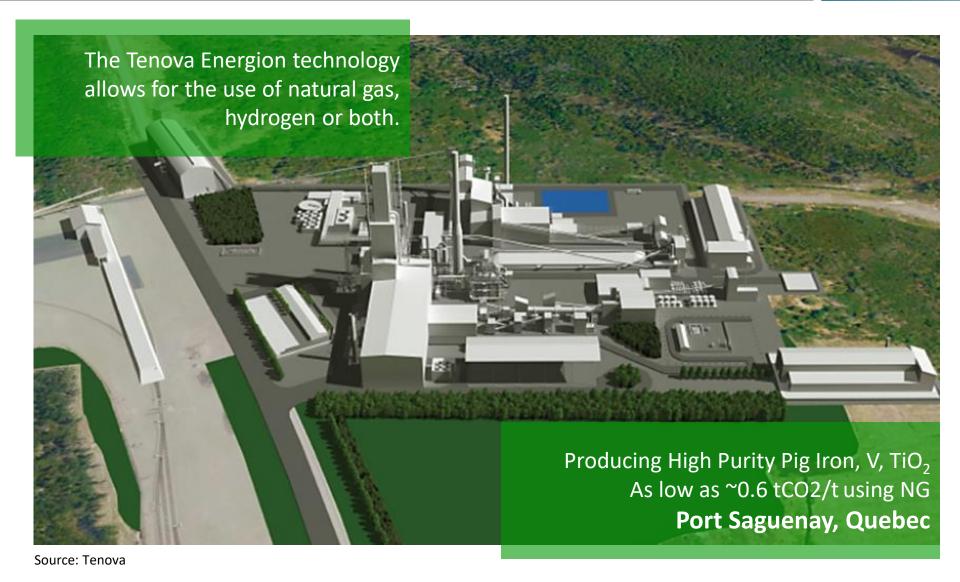
BlackRock product quality expected to be equal or better quality than Sorel

Pig iron in high demand as USA, Japan & EU go fully electric

Disrupts supply/material flows across steel supply chain

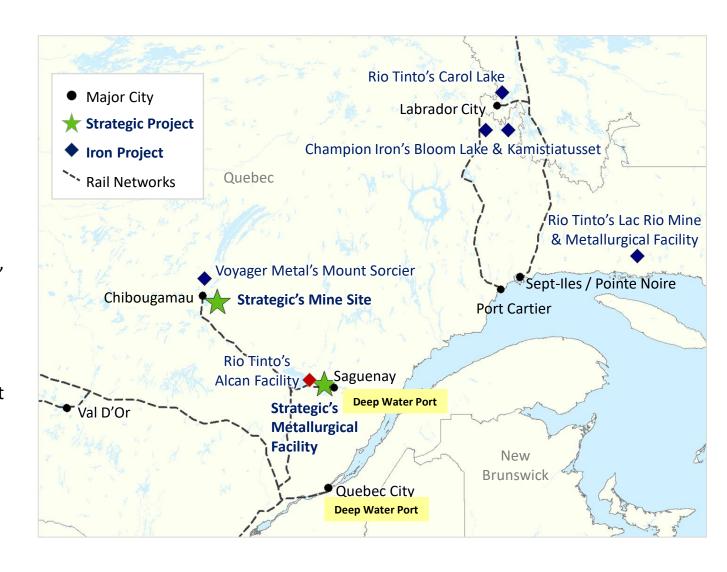
EAF's will be 50% of global steel by 2050 vs. 30% today

~1B tons of steel per year


^{(2) \$420}M for Algoma Steel, \$400 million for Arcelor Mittal Dofasco and \$49.9-million for Stelco

^{(1) 2022} CRU Group study released by Steel Manufacturers Association

The Greenest Pig Iron Plant in the World

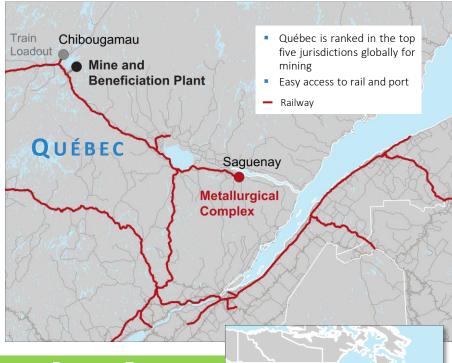


The Northern Québec Iron Landscape

- Québec will be a focal point for the highgrade iron concentrate and high-grade iron metallic products that will drive the green steel transition
- Strategic's mine and metallurgical facility is close to existing mines, infrastructure and ports that are already servicing the steel value chain
- Strategic's iron product is expected to be the same quality as Rio Tinto's Quebec based Sorel metal; currently the gold standard of iron metallic products

How is Strategic Comparable to Champion?

Ability to Produce Products		
Iron ore concentrate	\checkmark	\checkmark
Iron ore pellets	Permitting	\checkmark
Direct reduced iron (metallic iron)	X	\checkmark
Critical metal by-products	X	\checkmark
Financial Metrics		
Market Capitalization (C\$)	\$2,764M	\$91M
Annual Revenue (C\$)	\$1,395M (2023 YE)	\$811M (Avg. from Feas.)
Quebec Government Support	8.4% Equity Holder / Loan provider	41% Equity Holder / Substantial Future Project Funding
Champion Share Price History		
\$10.00 \$8.00 Bloom Lake Feb 2017 – Releases Feasibility Study \$10.00 \$2.00	~300% return from Feasib	ility Study to Present


A Unique Fully Permitted Multi-Metal Project

BLACKROCK PROJECT OVERVIEW

- Multi-metallic ferroalloy project located in Québec
 - Project with an integrated mine and concentrator in Chibougamau with metallurgical facility at Port Saguenay
 - Targeting production of merchant pig iron ("MPI"), vanadium and titanium
- Low-cost supplier to the North American market for Vanadium & high purity merchant pig iron, a critical ingredient for electric arc furnaces ("EAF") to dilute impurities in scrap steel
- Advantaged infrastructure access for rail, road, port and electricity
- Strong project sponsors, community and provincial support
- Major international engineering and technical partners
- Environmental permitting at the mine already secured
- Geology well understood & Metallurgy already pilot tested

STRATEGICALLY LOCATED IN MINING FRIENDLY JURISDICTION

PRODUCT PORTFOLIO - PHASE 1 - SUBSTANTIAL POTENTIAL FOR PROJECT EXPANSION

Iron

Producing an average of 526 kt MPI per year over the project life

Vanadium

Producing an average of 4.4 kt FeV₈₀ per year over the project life

Titanium

Producing an average of 118 kt Ti slag per year over the project life

Generational Resource with Exploration Upside

SUMMARY RESERVES AND RESOURCES (MT)

Proven & Probable	Southwest Deposit	Armitage Deposit	Total
Contained Fe ₂ O ₃ (Iron Oxide)	51.4	-	51.4
Contained V ₂ O ₅ (Vanadium Pentoxide)	0.6	-	0.6
Contained TiO ₂ (Titanium Dioxide)	9.8	-	9.8

Measured & Indicated	Southwest Deposit	Armitage Deposit	Total
Contained Fe ₂ O ₃ (Iron Oxide)	75.0	63.8	138.6
Contained V ₂ O ₅ (Vanadium Pentoxide)	0.9	0.7	1.6
Contained TiO ₂ (Titanium Dioxide)	14.4	12.3	26.7

PIT & BENEFICIATION PLANT LAYOUT

20 km strike length provides scope for substantial resource growth

Advantaged Access to Infrastructure

INFRASTRUCTURE HIGHLIGHTS

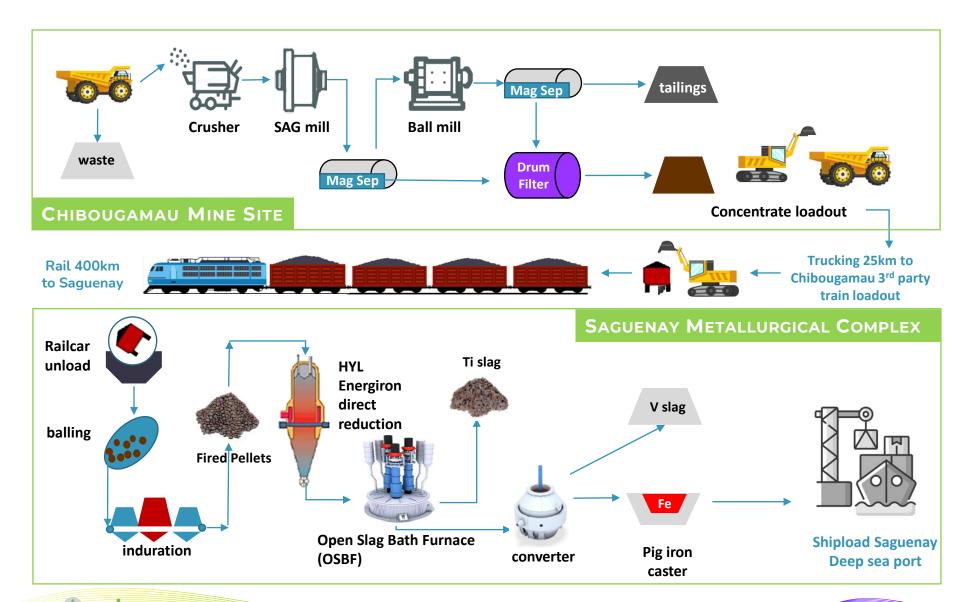
Port and power agreements signed

- Deep water, four season, federally owned Port of Saguenay is underutilized
- Low-cost energy supply to metallurgical complex
 - Electrical substations and main power lines nearby
 - Hydro Québec agreement for mine site and metallurgical plant - green hydro-electric power
 - Energir will provide natural gas to metallurgical complex from its local main pipeline

Site and rail access in place

- Existing road access to site
- 25 km trucking distance to rail load out point

Industrial site qualified for Québec maritime strategy funding

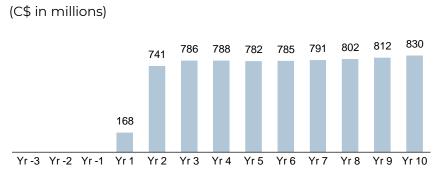


Provincial and federal entities working towards building significant infrastructure to support BlackRock

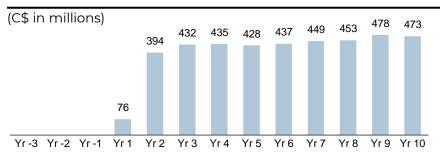
Integrated Mine, Mill & Metallurgical Plant

BlackRock Feasibility Summary (Nov 2022)

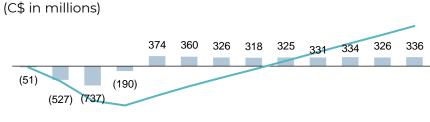
Avg. LOM


BlackRock Project - Feasibility Summary

Mine Life	39 years
After-Tax NPV8%	\$1,932
After-Tax IRR (%)	18.2%
Initial Capital	\$1,471


	5. =
Production (kt)	
FeV ₈₀ (toll processed)	4.4
Ti Slag	118
MPI	526
Commodity prices (C\$/t FOB)	
FeV ₈₀	\$49,771
Ti Slag	\$395
MPI	\$1,018
Revenue (C\$M/yr)	
FeV ₈₀	\$217
Ti Slag¹	\$57
MPI	\$537
Operating costs (C\$M/yr)	
FeV ₈₀	\$77
Ti Slag ¹	\$7
MPI	\$216
Key Metrics (C\$M)	
Revenue	\$811
EBITDA	\$478
After-Tax Cash Flow	\$343

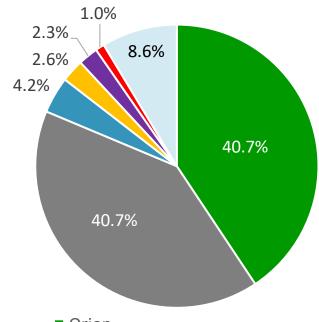
¹ Includes alloy metal strip.


BlackRock Revenue - First 10 Years

BlackRock EBITDA - First 10 Years

BlackRock After-tax Cash Flow - First 10 Years

Yr-3 Yr-2 Yr-1 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 6 Yr 7 Yr 8 Yr 9 Yr 10


Capital Structure and Shareholders

Capital Structure	Shares (M)		
Basic Shares Outstanding	59.0		
Options Outstanding	3.3		
Deferred Stock Units	1.1		
Fully Diluted Shares Outstanding	63.5		
Share Price (Aug 22, 2023)	\$1.55		
Basic Market Cap.	С\$91М		
Cash (March 31, 2023)	C\$12.8M		

Existing Shareholders

- Orion
- Investissement Québec
- Ross Beaty and Lumina Group
- Cree (Indigenous Group)
- Aurion Resources
- Management and Board
- Other

Near-term Business Plan

- Strategic will work to secure a construction funding package consisting of debt, equity and off-take financing during the course of 2023
 - Government of Québec significant financial sponsorship + related infrastructure + additional support from Orion towards the C\$1.5B initial capital
 - Applying to Strategic Innovation Fund (SIF), a Federal Government program for 10% of initial capital

ILLUSTRATIVE CONSTRUCTION TIMELINE: H₁ 23 H₂ 23 H1 24 H2 24 H1 25 H₂ 25 H1 26 H2 26 H1 27 H2 27 H1 28 Close Transaction Secure Funding Package Construction Ramp-up

Potential Expansion and Product Opportunities

FERROVANADIUM PROCESSING

- Feasibility study contemplates toll processing vanadium slag with an off-taker
- Potential to construct and produce FeV80 and vanadium chemicals (incl. vanadium electrolyte for batteries) at the metallurgical plant at the Port of Saguenay

DOUBLING PRODUCTION

- Potential to increase the mining rate at the mine site and increase throughput at the metallurgical plant
 - Current met. plant capacity for ~25% expansion
- Second pit not considered in the Feasibility study, but could double the reserve tonnage

ILMENITE CIRCUIT

- Build an ilmenite beneficiation plant at the mine to produce ilmenite, then high-grade titanium feedstock
- Smelting the feedstock would produce highgrade titanium slag with pig iron as a byproduct (toll or with a new furnace)

FINLAND INTEGRATION

- Potential to build a concentrator at Mustavaara and ship concentrate to Québec
- Mustavaara concentrate has a similar iron and titanium spec., with higher vanadium grades

Strategic Resources Investment Highlights

Premium Critical Specialty Metals

- Positioned to be a global supplier of vanadium, high purity pig iron and titanium products
- Produces premium specialty metals which are central to the green materials transition and command a premium price
- Positive outlook for products and prices due to strong demand and structural supply issues

World-Class Projects

- The long-life, polymetallic BlackRock project has compelling economics supported by a feasibility study completed by industry leading firms
- The project has a first quartile cost position across all products driven by superior geology, proven technologies and advantaged infrastructure
- Mustavaara is a PEA-stage project that previously produced vanadium and iron

Tier I
Jurisdictions

- BlackRock is a high-grade deposit located in Québec a mining friendly, low-risk jurisdiction
- Excellent location with access and existing infrastructure including road, rail, port, low-cost power, and abundant labour and water
- Capacity on CN Rail line and deep seaports at Saguenay have capacity and year-round access
- Mustavaara is located in Finland a stable, resource-friendly country that is being tasked by the EU to increase its production of critical metals

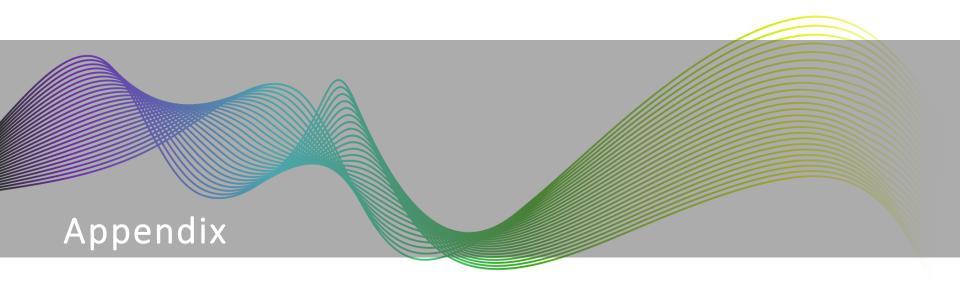
Strong Local Support

- Strong local and provincial support with strategic stakeholders
- The BlackRock Mining Project is located in the James Bay Territory and Metallurgical Plant is located at the deep sea-port of Saguenay and significant financial sponsored from the Government of Quebec
- Agreements in place with local First Nations, Hydro Quebec, Energir, Port & local municipalities

Strategic Resources Investment Highlights

- Seasoned Leadership
- Leadership team working together to advance the project since 2015 with First Nations (IBAs), local municipal leaders, Port Saguenay, Hydro-Quebec & Energir
- Construction/Project team Quebec-based industry veterans (Progesys, BBA and Tetra-tech)
- International & local industry relationships with strategic iron, steel and vanadium companies well developed
- Enhanced by existing project development team at Strategic Resources

Reduced Funding Risk


- Existing cash positions the Company to secure a larger construction funding package
- Substantial work complete on construction funding package (debt, offtake and equity)
- Large supportive shareholders that intend to provide additional funding as part of a construction financing package

7 Organic Growth Potential

- Ilmenite processing that would add additional feedstock market potential with value addition to additional pig iron and chloride grade titanium slag
- Doubling throughput capacity at the Blackrock mine site
- Adding ferrovanadium production to metallurgical facility (permitted)
- Integrating high grade vanadium titaniferous magnetite concentrate from Mustavaara in Finland

- Best-in-Class Sustainability Benefits
- Pig iron is a critical component of electric arc furnace steel production; much less CO2 than conventional blast furnace steel production; vanadium is used to strengthen steel which reduces overall emissions from the steelmaking process
- The BlackRock project also benefits form hydroelectric power and near zero metallurgical waste due to internal recycling
- Direct reduction technology provide path to H2 "clean iron" production with near zero CO2 foot print

Corporate Management Team

Key Management	Education	Experience
Sean Cleary Chairman & CEO	МВА	 25+ years mining finance, capital markets, merchant banking and board level experience Company builder - co-founder of BlackRock Metals, People Corporation, Pinnacle Steel, Caratax Ltd and involved in numerous early-stage development companies
Scott Hicks EVP Corporate Development Director	HBA Commerce	 Former investment banker with RBC Capital Markets and BMO Capital Markets Former CEO Strategic Resources Director at Atacama Copper Currently VP Corporate Development and Communications of Lumina Gold / Luminex Resources
Dan Nir Chief Financial Officer	НВА, МВА	 20 years investment banking and corporate development experience executing M&A and capital markets transactions Executive at BlackRock Metals for ten years where he arranged financing for the company from exploration though Full Feasibility and Permitting
Daniel Dutton Vice-President, Metallurgical & Technical	Metallurgical & Chemical Engineering	 Working on the BlackRock Project for 5 years and he has 25+ years in mining, vanadium, titanium, iron and steel industry with Highveld Steel & Vanadium / Vanchem Plant with Anglo American, Evraz and Duferco Developed numerous patents in titanium extraction with low grade titanium slags and participated in the design, manufacturing and commercial deployment of Vanadium Flow Redox Batteries
Alex Meterissian Vice-President, ESG & Communications	M.Sc. Pol. Science	 10+ years of governmental affairs consulting experience. Working on the BlackRock file since 2014 Instrumental in achieving Environmental Permits for the BlackRock Project, he also manages governmental & First Nations affairs, relations with local communities and media communications
Michael Lam Vice-President, Finance	CPA, CA	 25+ years of experience in accounting and finance Previously with Big 4 Accounting Firm, he has provided finance/accounting services to Canadian public companies for past ten years Consulting to the BlackRock Project for over 10 years
Jukka Pitkäjärvi Vice-President, Geology	M.Sc. Geology & Mineralogy	 25+ years of experience as a geologist and geophysicist Extensive experience in developing mines and mills in the vanadium and iron industry Former CEO of Ferrovan Oy in Finland

Board of Directors

Board of Directors	Education	Experience
Sean Cleary Chairman & CEO	МВА	 25+ years mining finance, capital markets, merchant banking and board level experience Company builder - co-founder of BlackRock Metals, People Corporation, Pinnacle Steel, Caratax Ltd and involved in numerous early-stage development companies
Scott Hicks Director	HBA Commerce	 Former investment banker with RBC Capital Markets and BMO Capital Markets Former CEO Strategic Resources Director at Atacama Copper Currently VP Corporate Development and Communications of Lumina Gold / Luminex Resources
Kurt Wasserman Director	B.S. Economics	 Investment manager at Orion Resource Partners Former investment banker with Rothschild & Co in Metals & Mining
Amyot Choquette Director	B.A.A	 Senior Director, Investments, at Ressources Québec, a division of Investissement Québec Previously with Société Générale de Financement du Québec, where he carried out investments and financings in the mining and forest products industries
Mark Serdan Director	B.Comm, CPA, CA	 20+ years of mining experience and currently the CFO at Aurion Resources. Portfolio Manager for ~15 years at BMO AM and UBS Global AM Previously worked 5 years at BMO Nesbitt Burns in Investment Banking and research.
Michael Moore Director	B.Sc., P. Geo	25 years of field work and project management experience working on gold-copper deposits, nickel-PGM deposits, manto-type carbonate replacement base metals, low sulphidation epithermal gold systems and uranium and tungsten mineralization
Victor Flores Observer	B.S. Geology, M.Sc.	 Director of Strategic Projects at Orion Resource Partners Previously with Paulson & Co., a leading NY-based hedge fund, where he was one of the Partners responsible for the firm's gold investments
Fabrice Consalvo Observer	M.Eng., MBA	 Director, Energy & Transport Electrification at Ressources Québec, a division of IQ Spent 20 years with Areva Group starting out as a design engineer and growing to assume roles in strategic planning, operational performance and business development

Supplier of High Purity Pig Iron to North America

MERCHANT AND HIGH PURITY PIG IRON

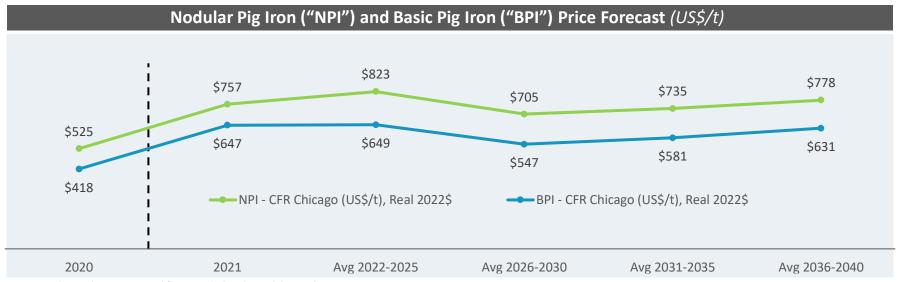
- Merchant pig iron is a semi-finished steel derived from the smelting of iron concentrate
- Critical feedstock for electric arc green steel producers and ductile foundry applications to upgrade iron content of scrap
- Utilized in all aspects of every day life buildings, bridges, cars, aviation, construction
- High purity pig iron ("HPPI") is a superior quality, premium priced pig iron

Key points for HPPI and BlackRock's positioning:

- 1. China & Russia represent ~85% of supply
- 2. Critical feedstock supply needed for electric arc furnaces
- 3. Will fuel energy transition and electric steel for North America
- 4. Required for government policy of decarbonizing the steel industry
- 5. BlackRock metallurgical facility designed to use clean hydrogen for pig iron production, which would make it the lowest GHG pig iron
- 6. Scrap steel supply is not pure enough and HPPI is required
- 7. The HPPI alone covers BlackRock's operating cash costs
- 8. Quebec is already a producer of high purity pig iron via Rio Tinto

Average production 526 ktpa MPI; ~66% life of mine revenues

Merchant Pig Iron Market Overview


Primary MPI Uses

- Merchant Pig Iron ("MPI") is a raw material or semi-finished steel derived from the smelting of iron concentrate
- Used as a metallic feedstock alongside scrap iron in electric arc furnaces ("EAF") to generate crude and finished steel products
- BlackRock's MPI product qualifies as a premium Merchant Pig Iron product (known as "Superhigh-grade T-two NPI") due to its low phosphorus and manganese content, which allows it to command a high price from foundries who face limited input substitution options

Supply and Demand

- The main exporters of MPI to NA and European markets are Russia, Ukraine and Brazil
- There are specialist NPI producers in Canada, Norway and South Africa
- The Russian and Ukrainian producers operate large blast furnaces using coke as the main reductant, and the Brazilian industry operates small blast furnaces using charcoal
- U.S. supply of NPI currently is almost exclusively sourced from Brazil – providing BlackRock a distinct geographic opportunity to provide reliable, cost-effective supply

- The use of scrap in EAF steelmaking inherently allows for impurities, which tend to reduce the performance of the finished steel
- As a result, certain finished steel products require that EAFs supplement their scrap with metallics such as MPI to impact higher purity
- Merchant pig iron has a higher metallization than HBI and also requires less energy to melt in the furnace
- MPI has a higher chemical energy, requires fewer carbon additions to the melt and it improves overall productivity and reduces charging time

Source: Market study commissioned for 2022 BlackRock Feasibility Study.

Positioned to be a Global Supplier of Vanadium

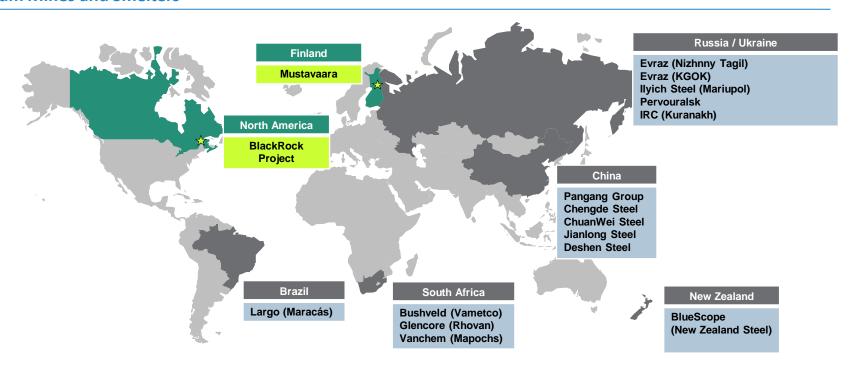
VANADIUM

- Vanadium is a key strengthening agent in construction steel
- Large OEMs utilizing vanadium in high strength low alloy steel in a shift to stronger, but lighter cars
- Next generation batteries like vanadium redox flow batteries offer long duration and greater power output

Key points for vanadium and BlackRock's positioning:

- 1. China & Russia represent ~80% global production
- 2. Solid base level demand as ferroalloy & aluminum alloy
- 3. Enhanced demand from energy transition & deep energy storage
- 4. Consumption to dramatically increase due to VRFB deployment over next decade
- 5. No existing primary resource vanadium producing mines in North America
- 6. Permitted BlackRock Project is the only near term North American producer
- 7. Listed as a "Critical Metal" by governments

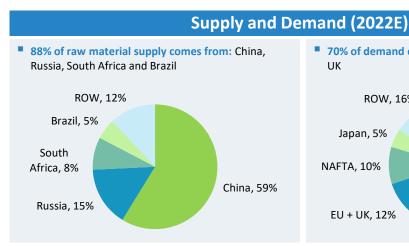
Average LOM production 4.4 ktpa FeV₈₀; ~27% life of mine revenues

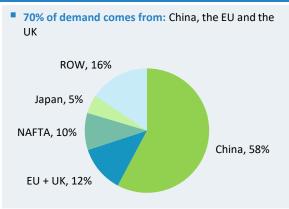


Providing Vanadium from Stable Jurisdictions

- Over 70% of the world's vanadium is derived from co-product steel slag
- Majority of deposits have lower grades and higher contaminants than Strategic's deposits
- Majority of existing merchant pig iron production comes from Russia, Ukraine and Brazil; Canada and Finland are widely considered to be preferred green mining jurisdictions

Vanadium Mines and Smelters




Vanadium Market Overview

Primary Vanadium Uses

- Steel (93% of demand): Production of highstrength, low-alloy steel and other highperformance steel
- Chemical and Aerospace (6%): Creating titanium alloys for the aerospace end market and as an oxidation catalyst in pollution control and chemical production processes
- Batteries (1%): Grid and portable energy storage applications

Source: Wood Mackenzie (Supply and Demand) and BMO Capital Markets (Forecast)

Positioned to be a Global Supplier of Titanium

TITANIUM

- Titanium dioxide ("TiO₂") will be produced as a by-product
- Majority of TiO₂ is used as a feedstock for pigment (paints and coatings)
- TiO₂ is considered a quality-of-life product – as disposable income rises, so does TiO₂ consumption

Key points for titanium and BlackRock's positioning:

- 1. Long term growth forecasted for titanium demand
- 2. Russia is supplying a significant portion of US titanium
- 3. Numerous aerospace and military applications
- 4. Long term demand as ferroalloy & aluminum alloy
- 5. Additional demand from pigment & coatings
- 6. Quebec is already a producer of world class titanium feedstocks via Rio Tinto
- 7. Listed as a "Critical Metal" by governments

Average production 118 ktpa Ti slag; ~6% life of mine revenues

BlackRock - Permitting History and Status

2013

- Applied for a mining lease from the Ministère des Ressources naturelles du Québec and the Canadian Agency for Environmental Evaluation held public hearings
- Granted provincial Global Certificate of Authorization for the production of magnetite concentrate containing vanadium at the mine site

2017

Metallurgical Plant Impact Study submitted

2019

- Granted modified provincial Global Certificate of Authorization for the production of magnetite concentrate containing vanadium at the mine site
- Permit was modified to reduce tonnage of concentrate produced to match requirements of metallurgical plant
- Granted permit for the metallurgical plant
- Full project, mine site and metallurgical facility are shovel ready

Mine site and metallurgical facility have received all required construction permits

Exceptional Project Stakeholders at BlackRock

ocal

- Agreement with First Nations provides support and social acceptability
- The Cree Nation are experienced partners, commercially advanced and a well-funded First Nations group

- 20-year government program to develop the mining resource in Québec
- BlackRock's project is one of a very few that meet all criteria for government support

ogistic.

Engineering

Canada Port Authorities

- Federally owned, deep water port at Saguenay, Québec
- Long term lease for Metallurgical Plant and Agreement to use the port for storage and shipping year round
- Connected to rail, power and natural gas (Potential Hydrogen Hub in Quebec)

- Independent Canadian consulting engineering firm with extensive experience in Québec and abroad
- BBA 43-101 feasibility study for mine, concentrator and metallurgical plant (along with Tetra Tech and WSP)

- Global fully integrated provider of consulting and engineering services with strong local presence in the Province of Québec
- Will work with BBA on the balance of metallurgical plant engineering

- Worldwide supplier of advanced technologies, products and engineering services for the metals, mining and minerals industries
- Worked with BBA on feasibility study on transformation / processing of vanadium titanium magnetite

Additionally, BlackRock Metals is in discussions on potential offtake agreements with multiple established global traders

Best-in-Class Sustainability Benefits

HIGH PURITY PIG IRON

Critical component to EAF green steel production

As scrap usage increases and scrap quality erodes, high purity pig iron demand increases

By 2050, steel use is projected to increase by ~20% to meet needs of population

To meet IEA's Sustainable Development Scenario, the combined global market share of scrap-based EAFs and induction furnaces needs to reach +28% by 2030

> >50% CO₂ reduction vs. conventional BOF steel

BlackRock ensures end-to-end North

American supply chain solution

Sources: World Steel Association and IEA

VANADIUM

Vanadium alloying agent makes steel stronger and better

Vanadium used to strengthen steel rebar avoids 26 Mt CO2 globally

Substantial upside with increased gridlevel storage demand for VRFB installations, which have advantages over other electro-chemical battery types for long duration energy storage at scale

>4,500 GWh total demand for batteries from stationary storage and electric transport sectors by 2040

>US\$600 billion investment over next 20 years on energy storage

Battery demand for vanadium +30% CAGR over next ~10 years

OTHER SUSTAINABILITY BENEFITS

Hydroelectric power source

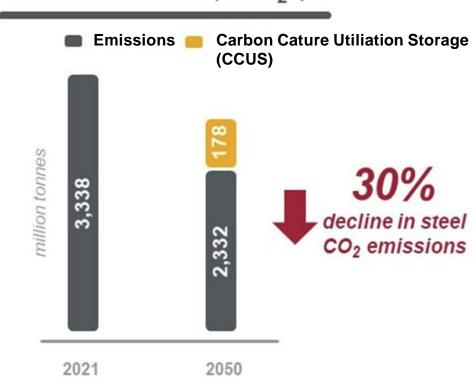
Leveraging existing infrastructure networks

Displacing more carbon intensive raw-material supply

Strong local stakeholder support, including from First Nations

Near zero metallurgical waste due to internal recycling

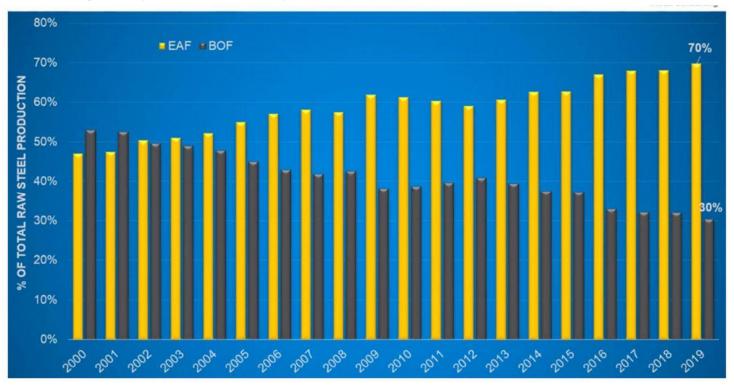
Global EAF vs. Blast Furnace



Inner Pie: 2021 Steel production
Outer Pie: 2050 in Mt

Carbon Emissions (MtCO2e)

EAF will account for ~50% of global steel production by 2050, up from 30% today


Source: Wood Mackenzie

US EAF Share over the Last 20 Years

- US produces 90 million tons of steel per year (70% Electric Furnace)
- The last 30 million tons of steel in USA will convert to electric which impacts demand on
 - Scrap steel (+20 million tons)
 - DRI, HBI & Pig Iron (+10 million tons)

Over the Past 20 years Electric Grew from 45% to 70% in the United States

Technology Development for BlackRock

FLSmidth is a leading full-flowsheet technology supplier for copper, gold, nickel, zinc and lithium mining. Products range from crushing, screening, conveying, separation, pumps and tailing to digital solutions for process performance. Its equipment is designed to provide up to decades of productive capacity.

Metso:Outotec

Metso Outotec's traveling grate pelletizing plant is the industry's leading induration technology for iron ore pellet production for a wide range of plant capacities. Based on over 60 years' experience and world-class R&D, the process produces uniform pellets and ensures high performance and quality, with low investment and operating costs, as well as decreased energy consumption and emissions. Globally, they have delivered more than 65 plants for a wide range of ore types. The traveling grate indurating process is responsible for two thirds of the world's installed pelletizing capacity.

Tenova partner with their stakeholders to design and develop technological solutions for metal processing that cut costs, save energy, decarbonize production processes and reduce environmental impact. From Direct Reduction Iron to Electrical Arc Furnaces, from reheating and heat treatment furnaces to cold mills, processing lines and roll grinders, they offer premium solutions that are the result of responsible, reliable, environmentally-friendly innovation. Tenova's efforts starts even earlier, further up the value chain, with global mining, bulk material handling and mineral processing technologies and services provided under the brands **TAKRAF** and DELKOR. Incorporating hydrometallurgy, pyrometallurgy and port facilities, they are helping find the way in a new era for metals.

Key technology provider of the converter technology to produce the necessary vanadium slag feedstock from the vanadium contained hot metal produced from Strategic Resources OSBF. Primetals Technologies is a leader in the steelmaking sector in terms of reliability and economy as a result of the industries increased demands placed on product quality, plant productivity and availability.

Metallurgical Validation Testing Completed

- Drilling program with associated Davis Tube magnetic separation testing
- Bulk Sample Processing
 - 400kg bulk sample test campaign conducted by Corem, produced 120kg Concentrate
- Concentrate Testing
 - Pelletizing test at Corem
 - Direct Reduction tests at Ternium Monterrey
 - Smelting (HPPI & TiO2 slag production) test at Mintek
 - Vanadium slag production testing at Mintek
 - Vanadium recovery from slag testing (roasting, leaching, precipitation and FeV production) at Mintek
- Process Design Development
 - FLSmidth

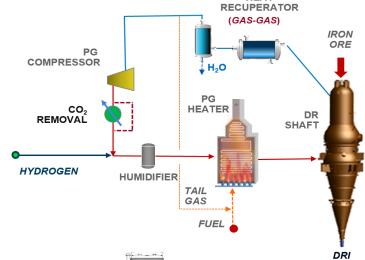
- Danieli
- Metso-Outotec
- Tenova USA
- Tenova USA
- Primetals
- Industrial Economy
- Pyromet South Africa (Vanadium)
- BBA
- Tetratech

Hydrogen Makes it Possible to Address Major Challenges

One molecule, multiple uses:

✓ A molecule used in various industrial processes, including refining, chemicals, electronics, etc.

But it can also be used:


- ✓ As a feedstock to decarbonize industry
- ✓ As an energy carrier for industry and clean mobility


A solution for a better future Hydrogen plays a role in:

- ✓ Fighting against climate change
- ✓ Tackling the energy transition
- ✓ Reshaping industry
- Deploying clean mobility

Tenova shown experience with Hydrogen use:

- ✓ Experience in ENERGIRON plants with reformer using in excess of 70% H₂
- Scheme natively fitted for direct use of H₂
- ✓ Completion of pilot plant tests with ~90% H₂ since 1990's
- Extensive experience and operation with Process Gas heaters and gas sealing valves design, specifically with high percentages of H₂

Comparison between OSBF and EAF

OSBF

Open Slag Bath Furnace

EAF

Electric Arc Furnace

- Process sealed from surrounding atmosphere
 - → **Reducing** environment
- Large bath surface area
 - →Lower power density
- Long term vessel and lining philosophy
- Distributed & continuous material feed
- Continuous "power on"
- Simple secondary power factor correction
- Suspended self-baking Söderberg electrodes
- Tapping of hot metal

- Open to atmosphere
 - → Oxidizing environment
- Smaller bath surface area
 - → Higher power density
- Short term vessel and lining philosophy
- Concentrated & intermittent feed of materials
- Intermittent "power on" / batch operation
- High network feedback depending on operation
- Graphite electrodes and electrode arms
- Tapping of steel

Other facts on OSBF:

- 1. The perfect solution for melting high carbon DRI to produce hot metal.
- 2. Developed for vanadium titaniferous magnetite iron ores (VTM). Been in operation for the last ~50 years (New Zealand Steel and Highveld Steel and Vanadium)
- 3. "Green Metallics": Reduction can be fully based on green H2; heating fully electrified
- 4. Flexible ore basis Utilization of multiple iron ore qualities (low to high-grades)
- 5. Higher iron yields due to higher superheat in the metal and less iron entrapment in the slag.
- 6. Power utilization factors in excess of 98%.
- 7. Vanadium recovery increased from 70% to over 85%.
- 8. Lower electrode consumption

BlackRock Reserve and Resources Summary

Southwest NI 43-101 Mineral Reserve Estimate

Category	Tonnes (Mt)	In Situ Grade (%)			In Situ Contained (Mt)		
		V ₂ O ₅	Fe ₂ O ₃	TiO ₂	V ₂ O ₅	Fe ₂ O ₃	TiO ₂
Proven	123.9	0.46	40.2	7.7	0.57	49.8	9.5
Probable	3.9	0.42	40.3	8.1	0.02	1.6	0.3
Total Reserves	127.8	0.46	40.2	7.8	0.59	51.4	9.8

Southwest and Armitage NI 43-101 Mineral Resource Estimate

Category	Tonnes (Mt)		In Situ Grade (%)		In Situ Contained (Mt)		
		V ₂ O ₅	Fe ₂ O ₃	TiO ₂	V ₂ O ₅	Fe ₂ O ₃	TiO ₂
Measured	287.2	0.45	39.0	7.5	1.3	112.0	21.5
Indicated	68.3	0.44	39.0	7.6	0.3	26.6	5.2
Total M&I	355.5	0.44	39.0	7.5	1.6	138.6	26.7
Inferred	73.3	0.44	39.7	7.9	0.3	29.1	5.8

Note: See Appendix for Reserve and Resources notes.

BlackRock NI 43-101 Reserve and Resources Notes

- 1. Resources are defined at a minimum cut-off of 10% Satmagan. Due to the necessary rounding of estimates, the rounded totals may slightly differ from the sum of rounded individual estimates.
- 2. The Mineral Resource estimate was completed by Michel Dagbert, Eng. (OIQ #45944) from SGS Canada, an independent Qualified Person as defined in NI 43-101.
- 3. The effective date of the Mineral Reserve estimate is October 2022
- 4. The Mineral Reserves were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Standards for Mineral Resources and Reserves, Definitions and Guidelines prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council in May 2014.
- 5. Qualified Person: The Mineral Reserve statement was prepared by Isabelle Leblanc (OIQ #144395) of BBA, an "independent qualified person", as that term is defined by National Instrument 43-101.
- 6. Open pit Mineral Reserves have been estimated using a 0.29 net revenue factor apply on High Purity Pig Iron (HPPI) price of 670 CAD/t of product, a Ferrovanadium (FeV) price of 54,341CAD/t of product, a foreign exchange rate of CAD1.33 to USD1.00.
- 7. Open pit reserves have been estimated using a cut-off grade of 10% Diluted Satmagan.
- 8. The life of mine strip ratio is 2.2.
- 9. Reserves are derived from the Satmagan Resources Statement (127.8Mt of resources in the Measured and Indicated categories at a cut-off grade of 10%) prepared by Michel Dagbert (OIQ #45944) of SGS Geostat. BlackRock exploration program in the Chibougamau Municipality is being supervised by Charles Perry, P.Geo., and Pierre O'Dowd, P.Geo., both Qualified Persons, as defined by National Instrument 43-101. Mineral Resources are inclusive of Mineral Reserves.
- 10. The reference point for the Mineral Reserves is the crusher feed.
- 11. Expected % V2O5 in concentrate and % metallurgical weight recovery are based on Davis Tube Analysis (DTA) metallurgical test work.
- 12. BBA is not aware of any known environmental, permitting, legal, title-related, taxation, socio-political, marketing or other relevant issue that could materially affect the Mineral Reserves estimate.

Mustavaara – A Past Producing Asset

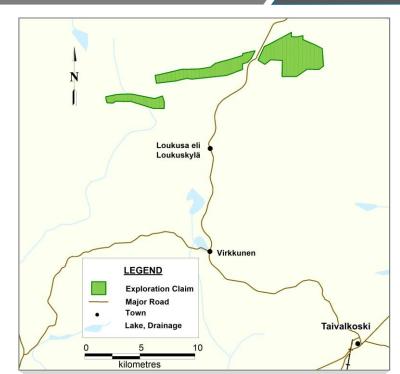
TIER 1 COUNTRY

- Finland stable government with growing economy
- EU looking to Finland to supply growing critical metal requirements

ESG

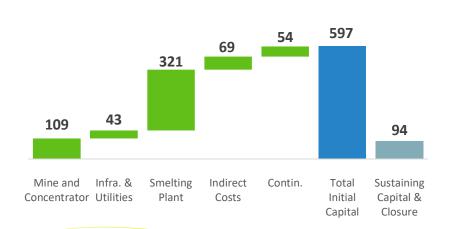
- Brownfields site with prior disturbance
- Access to carbon free hydro and nuclear power

REDUCED RISK


- Past producer of V205 and pig iron
- Metallurgy that works with proven ability to upgrade material to concentrate
- Consistent, well understood mineralization

Mustavaara Overview

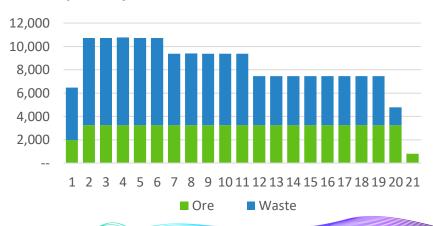
- Mustavaara is located in north-central Finland, approximately 179 km northwest of Oulu and 650 km north of Helsinki
- Access to the property is provided by paved highways and a gravel road to the property
- Consists of three reservations totalling ~2,650 ha
- Approximately 10,000 metres of drilling over 73 holes has been completed on the property
- Previously mined by the Finnish state company Rautaruukki Oy between 1976 and 1985
 - Mustavaara and the nearby Otanmäki deposit accounted for ~10% of world vanadium production
- Historic mining reached a max depth of 50 metres along a 1,000 metre corridor before ceasing due to low metal prices of $^{\circ}$ US\$1.50/lb V $_{2}$ O $_{5}$
- Remaining NI 43-101 compliant M&I resource totaling 104 Mt @ 15.4% magnetite and 0.90% vanadium in concentrate
- Vanadium-rich magnetite zones located along an 18 km long magnetic anomaly – Large scale potential along strike
 - Simple magnetic separation upgrade anticipated


Mustavaara PEA Summary (Jun 2021)

PEA Highlights

- 20.25-year mine life
- Annual production of 4.6 kt of FeV80 & 329 kt of pig iron
- After-tax NPV (8%) and IRR of €190 million and 12.2%
- Average all-in sustaining co-product cash costs of €15.2 /kg FeV80 and €210.7/t pig iron
- LOM revenue mix of 46.7 % FeV80, 50.8 % pig iron and 2.6 % other by-products

Life of Mine Capital Costs (€M)



NPV (8%) and IRR Sensitivity

Mine Plan Summary (kt)

LOM strip ratio of 1.7 to 1.0

Mustavaara Resource Summary

Mineral Resource Estimate Summary (11.0% magnetite cut-off grade)

Resource Class	Million Tonnes	Average Grade				Contained Metal		
		Magnetite (%)	VinMC ⁽¹⁾ (%)	Ti ⁽²⁾ (%)	Fe ⁽²⁾ (%)	VinMC ⁽¹⁾ (kt)	Ti ⁽²⁾ (kt)	Fe ⁽²⁾ (kt)
Measured	64.0	15.41	0.91	3.75	63.3	90	370	6,244
Indicated	39.7	15.27	0.88	3.53	62.8	53	214	3,805
Total M&I	103.7	15.36	0.90	3.67	63.1	143	584	10,049
Inferred	42.2	15.11	0.92	3.75	62.3	59	239	3,971

Sensitivity of Measured + Indicated Mineral Resource to Cut-Off Grade

Cut-Off Magnetite (%)	Million Tonnes		Average	Grade	Contained Metal			
		Magnetite (%)	VinMC ⁽¹⁾ (%)	Ti ⁽²⁾ (%)	Fe ⁽²⁾ (%)	VinMC ⁽¹⁾ (kt)	Ti ⁽²⁾ (kt)	Fe ⁽²⁾ (kt)
8.0	107	15.17	0.9	3.64	63.2	146	593	10,281
10.0	106	15.26	0.9	3.65	63.2	146	590	10,291
11.0	104	15.36	0.9	3.67	63.1	143	584	10,049
12.0	95	15.71	0.9	3.72	63.0	134	555	9,394
14.0	67	16.81	0.9	3.80	62.9	102	430	7,115

Note: The mineral resource estimate has an effective date of September 14, 2020. Metal prices used: Pig Iron US\$350.00 per tonne, Ferrovanadium US\$30.00 per kilogram. (1) The weight percent of vanadium retained in the magnetic fraction is reported as VinMC (Vanadium in Magnetic Concentrate) and can be correlated with magnetically recovered vanadium grades in large scale magnetic separation plants. This work has indicated that the magnetite content could be upgraded by a factor of six. (2) Ti (titanium) and Fe (iron) grades and contained metal values are stated in recovered magnetite concentrate post upgrading.

TSX.V: SR

info@strategic-res.com
www.strategic-res.com

MONTRÉAL HEAD OFFICE:

1539 - 1155 Metcalfe St Montreal | QU | H3B 2V6 Canada

EXECUTIVE OFFICES:

2500 - 120 Adelaide St West Toronto | ON | M5H 1T1 Canada 410 – 625 Howe St Vancouver | BC | V6C 2T6 Canada

